

INTEGRATED TECHNICAL EDUCATION CLUSTER AT ALAMEERIA

E-626-A Data Communication and Industrial Networks (DC-IN)

Lecture #4 Data Transmission & Media

Instructor: Dr. Ahmad El-Banna Janna

Ahmad

Agenda

Transmission Terminology

Signals & Analog vs. Digital

Frequency Domain Concepts

Transmission Impairments

Guided Transmission Media (Twisted pairs, coaxial,..)

Wireless Transmission

)anna

© Ahmad

)anna

DC-IN, Lec#4 , Spring 201

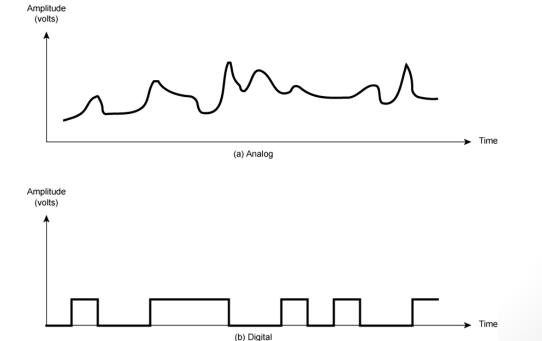
- The successful transmission of data depends on two factors:
 - The quality of the signal being transmitted
 - The characteristics of the transmission medium
- Data transmission occurs between a transmitter and a **receiver** over some transmission **medium**.
 - Guided media physical path
 - twisted pair, coaxial cable, optical fiber
 - Unguided (wireless) media
 - Air, water , vacuum

DC-IN, Lec#4, Spring 201

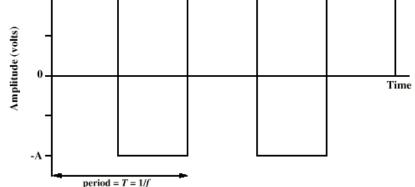
Transmission Terminology

- Direct link
 - Transmission path from transmitter to receiver with **no intermediate devices** (other than amplifiers)
- Point to point
 - Direct link between the only two devices sharing the medium (Note: can apply to unguided media)
- Multipoint
 - More than two devices share the same medium
- Simplex
 - Signal transmitted in one direction
 - e.g. cable television
- Half-duplex
 - Both stations may transmit, but one at a time
 - e.g. police radio
- Full-duplex
 - Both stations may transmit simultaneously
 - e.g. telephone

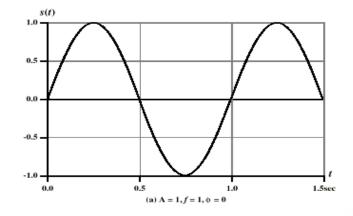
C-IN, Lec#4 , Spring 2015


6

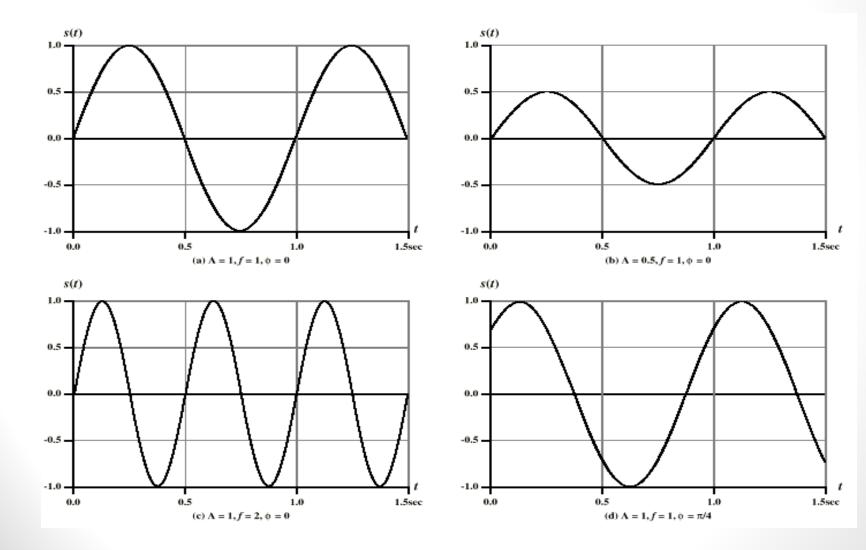
- Analog signal
 - Signal intensity varies in a smooth, continuous, fashion over time


 no breaks
- Digital signal
 - Signal intensity maintains constant level for some period of time and then abruptly changes to another constant level – discrete

Periodic Signal



© Ahmad El-Banna


8

Sine Wave (periodic continuous signal)

- Peak amplitude (A)
 - Maximum strength of signal
 - Typically measured in volts
- Frequency (f)
 - Rate at which signal repeats
 - Hertz (Hz) or cycles per second
 - Period (T) is time to repeat T = 1 / f
- Phase (**φ)**
 - Relative position in time within a single period

Varying Sine Waves $s(t) = A sin(2\pi ft + \Phi)$

© Ahmad El-Banna

DC-IN, Lec#4 , Spring 2015

9

Wavelength (λ)

Distance occupied by a single cycle

Distance between **two points** of **corresponding phase** of two consecutive cycles

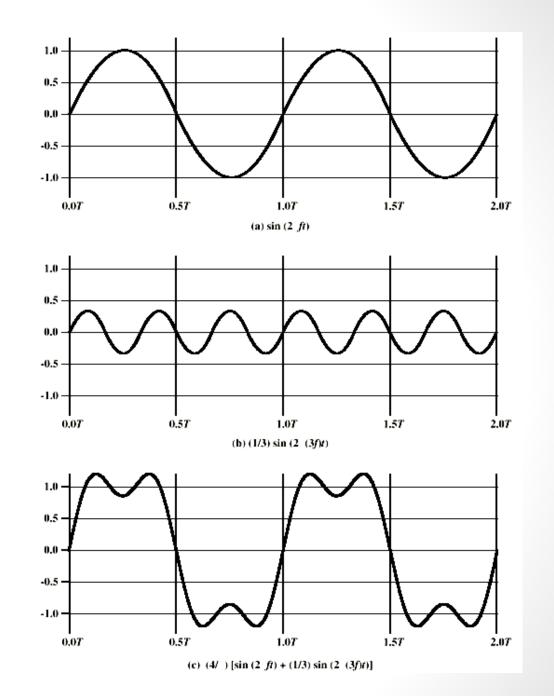
or

• Signal with velocity v, then wavelength is

 $\lambda = vT$ or $\lambda f = v$

Consider signal travelling at speed of light
 v = c = 3 x 10⁸ m/s

LO


DC-IN, Lec#4, Spring 201

Frequency Domain Concepts

- Signals are made up of many frequencies
- Components are sine waves
- Fourier analysis can show any signal is made up of components at various frequencies
- Each component is a sinusoid
- Can plot frequency domain functions

Addition of Frequency Components (T = 1/f)

Spectrum & Bandwidth

- Spectrum
 - Range of frequencies contained in a signal
 - e.g. *f* and 3*f* on previous slide
- Absolute bandwidth
 - Width of the spectrum
 - e.g. 2*f*
- Effective bandwidth (or just "bandwidth")
 - Narrow band of frequencies containing most of the energy in the signal

Data Rate and Bandwidth

- Any transmission system can carry only a limited band of frequencies
 - Limits the data rate that can be carried
- Square waves have infinite components
 - Infinite bandwidth
- Most energy in first few components
- Limiting bandwidth creates distortions

anna

Data, Signals, and Transmission

Data

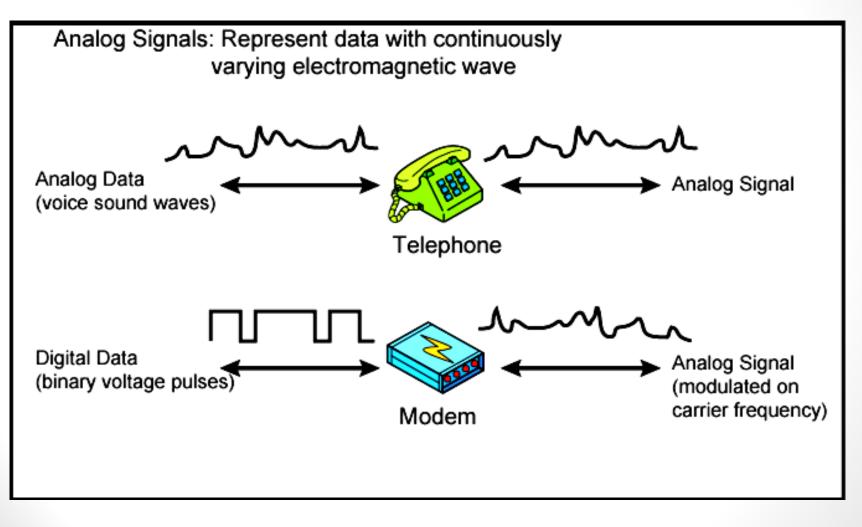
- Entities that convey information
- Signals
 - Electric or electromagnetic **representations of data**
- Signaling
 - Physical **propagation** of signal along medium
- Transmission
 - Communication of data by propagation and processing of signals

Digital Data & Signals

- Text (character strings)
 - Coded into sequence of bits
 - IRA International Reference Alphabet (ASCII)
 - 7-bit code with parity bit
- Image
 - Coded into pixels with number of bits per pixel

anna

LO


201

Suffer more from attenuation (strength loss)

© Ahmad El-Banna


DC-IN, Lec#4, Spring 2015

Digital Signals

18

Transmission Impairments

- signal received may differ from signal transmitted causing:
 - analog degradation of signal quality
 - digital bit errors
- most significant impairments are
 - attenuation
 - delay distortion
 - noise

anna

. Spring 201

JC-IN, Lec#4

Attenuation

- Signal strength falls off with distance over any communications medium
- Varies with frequency higher has more
- Received signal strength must be:
 - strong enough to be detected
 - sufficiently higher than noise to be received without error
- Strength increased with repeaters or amplifiers
- Adjust for attenuation by amplifying more at higher frequencies

LO.

, Spring 201

DC-IN, Lec#4

Delay Distortion

- occurs because propagation velocity of a signal through a guided medium varies with frequency
- various frequency components arrive at different times resulting in phase shifts between the frequencies
- particularly critical for digital data since parts of one bit spill over into others causing intersymbol interference

Noise

- **Unwanted signals** that are inserted somewhere between transmission and reception
- **Major limiting factor** in communications system performance

© Ahmad El-Banna

DC-IN, Lec#4, Spring 2015

- Thermal Noise
 - Thermal agitation of electrons
 - Uniformly distributed across bandwidths
 - Referred to as "white noise"
- Intermodulation Noise
 - Produce unwanted signals at a frequency that is the sum or difference of two original frequencies
 - e.g. signals at 4 KHz and 8 KHz may add noise at 12 KHz and interfere with a 12 KHz signal

Categories of Noise..

- Crosstalk
 - a signal from one line is picked up by another
 - can occur by electrical coupling between nearby twisted pairs or when microwave antennas pick up unwanted signals
- Impulse Noise
 - caused by external electromagnetic interferences
 - non-continuous, consisting of irregular pulses or spikes
 - short duration and high amplitude
 - **minor** annoyance for **analog** signals but a **major** source of error in digital data
 - For **example**, a sharp spike of energy of 0.01 s duration would not destroy any voice data but would wash out about 560 bits of digital data being transmitted at 56 kbps

C-IN, Lec#4, Spring 201

Channel Capacity

- Maximum rate at which data can be transmitted over a given communications channel under given conditions
- Four concepts
 - Data rate bits per second (bps))
 - Bandwidth cycles per second Hertz (Hz)
 - Noise average noise level over path
 - Error rate rate of corrupted bits
- Limitations are due to physical properties
- Main constraint on achieving efficiency is noise

Spring 201

C-IN, Lec#4

Nyquist Bandwidth

In the case of a channel that is noise free:

- if rate of signal transmission is 2B then can carry signal with frequencies no greater than B
 - given bandwidth B, highest signal rate is 2B
- for binary signals, 2B bps needs bandwidth B Hz
- can increase rate by using *M* signal levels
- Nyquist Formula is: C = 2B log₂M
- data rate can be increased by increasing signals
 - however this increases burden on receiver
 - noise & other impairments limit the value of M

Shannon Capacity Formula

- considering the relation of data rate, noise and error rate:
 - faster data rate shortens each bit so bursts of noise corrupts more bits
 - given noise level, higher rates mean higher errors
- Shannon developed formula relating these to signal to noise ratio (in decibels)
- SNR_{db} = 10 log₁₀ (signal/noise)
- capacity C = B log₂(1+SNR)
 - theoretical maximum capacity
 - get much lower rates in practice

TRANSMISSION MEDIA

Ahmad \bigcirc Spring 2015 DC-IN, Lec#4

)anna

S

DC-IN, Lec#4, Spring 201

Transmission Media

- Physical path between transmitter and receiver
- conducted or guided media
 - use a conductor such as a wire or a fiber optic cable to move the signal from sender to receiver
- wireless or unguided media
 - use radio waves of different frequencies and do not need a wire or cable to transmit signals

Guided Transmission Media

- the transmission capacity depends on the distance and on whether the medium is point-to-point or multipoint
- e.g.
 - twisted pair wires
 - coaxial cables
 - optical fiber

Janna

© Ahmad

Twisted Pair Wires

- consists of two insulated copper wires arranged in a regular spiral pattern to minimize the electromagnetic interference between adjacent pairs (crosstalk)
- often used at customer facilities and also over distances to carry voice as well as data communications
- low frequency transmission medium

Two varieties

UTP

- STP (shielded twisted pair)
 - the pair is wrapped with metallic foil or braid to insulate the pair from electromagnetic interference
- UTP (unshielded twisted pair)
 - each wire is insulated with **plastic wrap**, but the pair is encased in an outer covering

Twisted Pair Wires.

- Category 3 UTP
 - data rates of up to 16 Mbps are achievable
- Category 5 UTP
 - data rates of up to 100 Mbps are achievable
 - more tightly twisted than Category 3 cables
- Category 7 STP
 - Data rates in excess of 10 Gbps
 - More expensive, harder to work with

LO

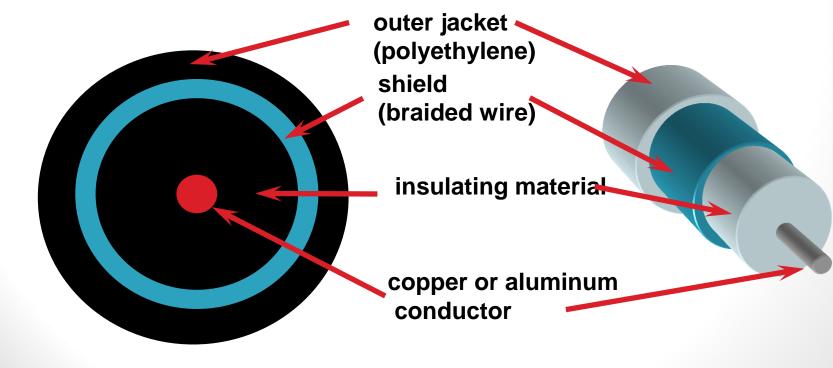
DC-IN, Lec#4, Spring 201

Twisted Pair Adv & Disadv

<u>Advantages</u>

- inexpensive and readily available
- flexible, light weight, easy to install
- <u>Disadvantages</u>
 - susceptibility to interference and noise
 - attenuation problem
 - For analog, repeaters needed every 5-6 km
 - For digital, repeaters needed every 2-3 km
 - relatively low bandwidth (100 MHz)

LO


Spring 201

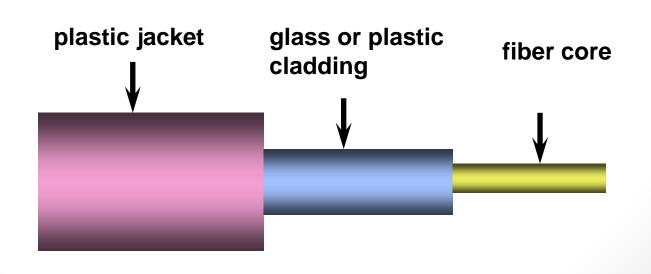
DC-IN, Lec#4

33

Coaxial Cable (or Coax)

- bandwidth of up to 500 MHz
- has an inner conductor surrounded by a braided mesh
- both conductors share a common center axial, hence the term "co-axial"

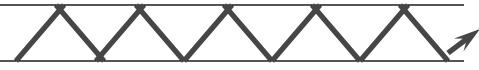
Coax Adv & Disadv


✓ higher bandwidth

- 🗸 400 to 600 Mhz
- ✓ Over 10,000 simultaneous voice conversations
- can be tapped easily (pros and cons)
- much less susceptible to interference than twisted pair
- Repeaters required every 2-3 km
- k high attenuation rate makes it expensive over long distance more repeaters – especially for digital signaling at higher data rates
- x bulky

35

Fiber Optic Cable


- relatively new transmission medium used by telephone companies in place of long-distance trunk lines
- also used by **private companies** in implementing local data networks
- require a light source with injection laser diode (ILD) or lightemitting diodes (LED)
- consists of **three** concentric **sections**

JC-IN, Lec#4 , Spring 201

Fiber Optic Types

- multimode step-index fiber
 - the reflective walls of the fiber move the light pulses to the receiver

- multimode graded-index fiber
 - acts to refract the light toward the center of the fiber by variations in the density

- single mode fiber
 - the light is guided down the center of an extremely narrow core

36

, Spring 201

C-IN. Lec#4

Fiber Optic Adv & Disadv

- ✓ greater capacity (hundreds of Gbps)
- ✓ smaller size and lighter weight
- ✓ lower attenuation
- immunity to environmental interference
- ✓ Greater repeater spacing 10s of km
- highly secure due to tap difficulty and lack of signal radiation
- x expensive over short distance
- x requires highly skilled installers
- x adding additional nodes is difficult

Guided Media Comparison

Point-to-Point Characteristics

Transmission	Rate	Bandwidth	Repeaters
Medium	Mbps	MHz	<u>km .</u>
Twisted Pair	100	3.5	2-6
Coaxial	500	500	1-10
Optical Fiber	20000	0 200000	10-50

LO

Wireless Transmission

- Transmission and reception are achieved by means of an antenna
- Directional (higher frequencies)
 - transmitting antenna puts out focused beam
 - transmitter and receiver must be **aligned**
- Omnidirectional (lower frequencies)
 - signal spreads out in all directions
 - can be received by many antennas

Wireless Examples

- terrestrial microwave transmission
- satellite transmission
- broadcast radio
- infrared

LO , Spring 201 C-IN, Lec#4

Terrestrial Microwave

- uses the radio frequency spectrum, commonly from 2 to 40 Ghz
- parabolic dish transmitter, mounted high as possible
- used by common carriers as well as private networks
- requires unobstructed line of sight between source and receiver
- curvature of the earth requires stations (called **repeaters**) to be ~50 km apart

LO

Spring 201

-IN. Lec#4

Microwave Applications

- long-haul telecommunications service for both voice and television transmission
- short point-to-point links between buildings for closed-circuit TV or link between LANs
- bypass application
 - e.g. bypass local telephone company to reach long-distance carrier

Microwave Data Rates

Typical Digital Microwave Performance

Band (GHz)	Bandwidth (MHz)	Data Rate (Mbps)
2	7	12
6	30	90
11	40	135
18	220	274

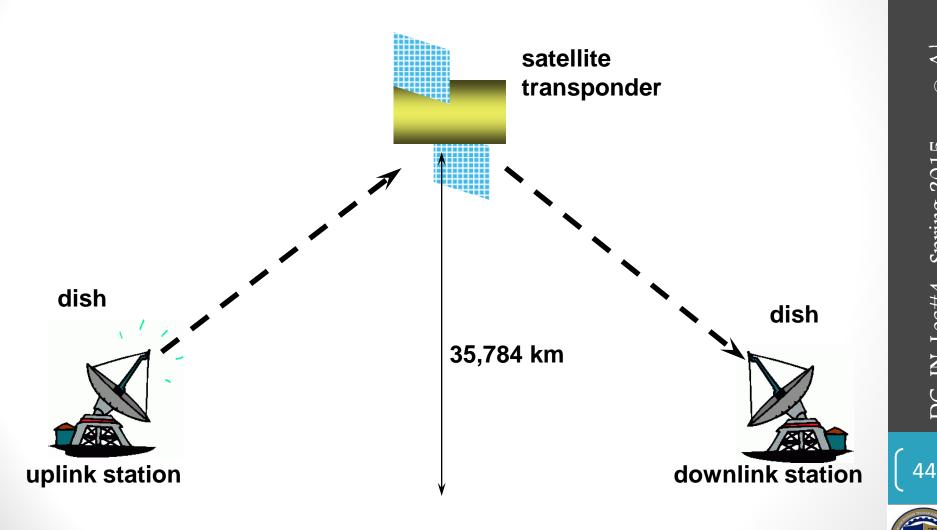
Microwave

- Advantages
 - no cabling needed between sites
 - wide **bandwidth**
 - multichannel transmissions
- <u>Disadvantages</u>
 - line of sight requirement
 - expensive towers and repeaters
 - subject to interference e.g. passing airplanes, rain

LO

Spring 201

JC-IN, Lec#4, Spring 201


- a microwave relay station in space
- can relay signals over long distances
- geostationary satellites
 - remain above the equator at **height of 35,863 km** (geosynchronous) orbit)
 - travel around the earth in exactly the time the earth takes to rotate

Satellite Transmission Links

- earth stations communicate by sending signals to the satellite on an **uplink**
- the satellite then repeats those signals on a downlink
- the broadcast nature of the downlink makes it attractive for services such as the distribution of **television programming**

Satellite Transmission Process

S

Spring 201

DC-IN, Lec#4

Satellite Applications

television distribution

- a network provides programming from a central location
- direct broadcast satellite (DBS)

long-distance telephone transmission

- high-usage international trunks
- private business networks
- global positioning
 - GPS services

DC-IN, Lec#4, Spring 201

LO

Principal Satellite Bands

- **C band:** 4(downlink) 6(uplink) GHz
 - the first to be designated
- Ku band: 12(downlink) -14(uplink) GHz
 - smaller and cheaper earth stations used
 - rain interference is the major problem
- Ka band: 20(downlink) 30(uplink) GHz
 - even smaller and cheaper receivers
 - Even greater attenuation

Satellite

- <u>Advantages</u>
 - can reach a large geographical area
 - high bandwidth
 - cheaper over long distances
- <u>Disadvantages</u>
 - high initial cost
 - susceptible to noise and interference
 - propagation delay (1/4 second)

S

DC-IN, Lec#4, Spring 201

Radio

- Omnidirectional and easily received
- Broadcast radio
 - 30 MHz to 1 GHz FM, UHF, VHF television
- Mobile telephony
 - several bands below 1GHz
- Wireless LAN
 - 2.4 GHz range for 11 MB up to 525 ft.

S

48

Infrared

- Modulation of incoherent infrared light
- Wavelength 900 nm
- Up to 2 Mbps
- Does not penetrate walls
 - no licensing required

OC-IN, Lec#4, Spring 2015

- For more details, refer to:
 - Chapters 3,4, W. Stallings, Data and Computer Communications, 8th ed. .
- The lecture is available online at:
- Lecture notes are found at:
 - <u>http://bu.edu.eg/staff/ahmad.elbanna-courses/12133</u>
- For inquires, send to:
 - <u>ahmad.elbanna@feng.bu.edu.eg</u>